Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(D1): D603-D609, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34850162

RESUMO

eQuilibrator (equilibrator.weizmann.ac.il) is a database of biochemical equilibrium constants and Gibbs free energies, originally designed as a web-based interface. While the website now counts around 1,000 distinct monthly users, its design could not accommodate larger compound databases and it lacked a scalable Application Programming Interface (API) for integration into other tools developed by the systems biology community. Here, we report on the recent updates to the database as well as the addition of a new Python-based interface to eQuilibrator that adds many new features such as a 100-fold larger compound database, the ability to add novel compounds, improvements in speed and memory use, and correction for Mg2+ ion concentrations. Moreover, the new interface can compute the covariance matrix of the uncertainty between estimates, for which we show the advantages and describe the application in metabolic modelling. We foresee that these improvements will make thermodynamic modelling more accessible and facilitate the integration of eQuilibrator into other software platforms.


Assuntos
Bases de Dados Factuais , Bases de Dados Genéticas , Software , Biologia de Sistemas , Humanos , Internet , Íons/química , Magnésio/química , Redes e Vias Metabólicas/genética , Modelos Moleculares , Termodinâmica , Interface Usuário-Computador
2.
Bioinformatics ; 37(18): 2938-2945, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-33755125

RESUMO

MOTIVATION: Random sampling of metabolic fluxes can provide a comprehensive description of the capabilities of a metabolic network. However, current sampling approaches do not model thermodynamics explicitly, leading to inaccurate predictions of an organism's potential or actual metabolic operations. RESULTS: We present a probabilistic framework combining thermodynamic quantities with steady-state flux constraints to analyze the properties of a metabolic network. It includes methods for probabilistic metabolic optimization and for joint sampling of thermodynamic and flux spaces. Applied to a model of Escherichia coli, we use the methods to reveal known and novel mechanisms of substrate channeling, and to accurately predict reaction directions and metabolite concentrations. Interestingly, predicted flux distributions are multimodal, leading to discrete hypotheses on E.coli's metabolic capabilities. AVAILABILITY AND IMPLEMENTATION: Python and MATLAB packages available at https://gitlab.com/csb.ethz/pta. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Redes e Vias Metabólicas , Modelos Biológicos , Termodinâmica , Escherichia coli/metabolismo
3.
Essays Biochem ; 62(4): 563-574, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30315095

RESUMO

At genome scale, it is not yet possible to devise detailed kinetic models for metabolism because data on the in vivo biochemistry are too sparse. Predictive large-scale models for metabolism most commonly use the constraint-based framework, in which network structures constrain possible metabolic phenotypes at steady state. However, these models commonly leave many possibilities open, making them less predictive than desired. With increasingly available -omics data, it is appealing to increase the predictive power of constraint-based models (CBMs) through data integration. Many corresponding methods have been developed, but data integration is still a challenge and existing methods perform less well than expected. Here, we review main approaches for the integration of different types of -omics data into CBMs focussing on the methods' assumptions and limitations. We argue that key assumptions - often derived from single-enzyme kinetics - do not generally apply in the context of networks, thereby explaining current limitations. Emerging methods bridging CBMs and biochemical kinetics may allow for -omics data integration in a common framework to provide more accurate predictions.


Assuntos
Redes Reguladoras de Genes , Genômica , Modelos Biológicos , Proteômica , Biologia de Sistemas/métodos , Cinética , Probabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...